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Abstract—In this work we propose the GLRT-MP algorithm
which combines compressed sensing techniques and classical
detection theory and explores its application to sparse arrays.
Sparse arrays are large undersample arrays with nonuniform
spacing that provides high resolution at the cost of high sidelobes.
Compressed sensing techniques are able to minimize the unde-
sired effects of the large array, while classical detection theory
provides a way to perform detection while maintaining a desired
false alarm probability. We provide analysis of the GLRT when
the noise power is known and unknown, the latter which will
allow one to design a CFAR radar. We provide numerical results
to verify our results.

I. INTRODUCTION

It is well known that a uniform linear array (ULA) with
half wavelength spacing ensures the absence of grating lobes
in the visible region of the array pattern. ULAs also produce
low sidelobes, a desirable trait during the beamforming stages
of target detection. In contrast, sparse arrays with large,
nonuniform inter-element spacing produces large sidelobes
but achieve higher resolution due to the large aperture [16].
However, due to the large sidelobes, the beamformer often
experience false peaks, which increases the probability of false
alarm.

In recent years, compressive sensing (CS) techniques tai-
lored for sparse localization frameworks [4], [8] were shown to
be able to cope with the spatial undersampling of sparse arrays
[5]. This exciting result enables the radar designer to imple-
ment large undersampled arrays without needlessly increasing
the false alarm probability. However, much of the literature in
CS techniques addressing localization of sparse targets (e.g.
[9], [10], [11]) fails to explain how CS techniques affect
parameters of interest to radar, specifically the probabilities
of false alarm and detection.

In this work, we seek to combine CS techniques with
classical detection theory. CS techniques enable to solve the
problem of localizing sparse targets, while classical detection
theory frames radar performance in meaningful operational
terms such as receiver operating characteristic (ROC) curves.
In particular, we develop a new detection algorithm referred to
as GLRT-Matching Pursuit (GLRT-MP). GLRT-MP combines
a classical GLRT approach [1], [2], with matching pursuit [15],
[14], [7]. Relying on matching pursuit concepts, GLRT-MP
searches for target candidates. Detection theory is applied to
test the target candidates for viability. A target that passed the

detection test, is then removed from the data such that it does
not interfere with subsequent searches.

This paper makes several contributions. First, we develop
a GLRT for multiple targets, and provide the false alarm and
detection probabilities. We then develop a CFAR detector for
multiple targets and provide the false alarm and detection prob-
abilities. Lastly, we propose the GLRT-MP, a new detection
algorithm that combines concepts from matching pursuit and
the GLRTs derived in this paper.

The rest of the paper is organized as follows: the signal
model is found in Section II; the derivation of the GLRT when
the noise power is known and unknown and the GLRT-MP
algorithm are presented in Section III; numerical results are
found in Section IV; finally, conclusions are drawn in Section
V.

The following notation is used: boldface denotes matrices
(uppercase) and vectors (lowercase); for a matrix X; X(i, :)
denotes the i-th row of X, for a vector x, xj represents the
j-th element of x; (·)T , denotes the transpose operator; (·)H
denotes the complex conjugate-transpose operator; for a matrix
X, PX is the orthogonal projection matrix that projects onto
the space spanned by the columns of X; for a matrix X,
P⊥X is the orthogonal projection matrix that projects onto the
space orthogonal to the columns of X; ‖X‖F is the Frobenius
norm of the matrix X; given a set S of indicies, |S| denotes
its cardinality, for a matrix A, AS is a sub-matrix of A
that is indexed by the set S; a central chi squared random
variable with a degrees of freedom (DOF) is denoted as χ2

a a
noncentral chi squared random variable with a DOF is denoted
as χ

′2
a ; a F distributed random variable with a numerator DOF

and b denominator DOF is denoted as Fa,b; the noncentral
F distribution with a numerator DOF and b denominator
DOF and a noncentrality parameter λ is denoted as F

′

a,b(λ);
finally, for a probability distribution function X the right-tail
probability at γ is denoted by P = QX(γ), while γ = Q−1X (P )
denotes its inverse.

II. SIGNAL MODEL

Let N sensors collect echoes from a finite train of P pulses
sent by a transmitter and returned from K stationary targets.
The sensors form a linear array with an aperture size of Z.
The n-th receiver is placed at position zn, measured in an
arbitrary coordinate system. Targets are assumed to be in the
far field, and the DOA of the k-th target is denoted θk.
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Following the examples in [4], [5], the DOA estimation
problem may be cast in a sparse framework. Neglecting
discretization errors, and assuming that all K targets comply
with a grid of G DOA grid points, we define the N ×G over-
complete dictionary matrix A = [a(φ1), . . . ,a(φG)] where
a(φ) is a steering vector defined,

a(φ) =
[
ej2πz1φ, . . . , ej2πzNφ

]T
. (1)

The narrowband response of the array to the p-th pulse,
y(p), also known as a snapshot, is expressed

y(p) = Ax(p) + e(p), p = 1, 2 . . . , P (2)

where, x(p) is a G×1 sparse vector of complex target gains
at the p-th snapshot with K � G nonzero entries, and e(p)
is complex white Gaussian noise at the p-th snapshot. Entries
of e(p) are independent and identically distributed, and each
entry has zero mean and variance σ2. We also define the mea-
surement matrix Y = [y(1), . . .y(P )]. Similarly, we define a
matrix of target gains X = [x(1), . . . ,x(P )] and the matrix
of complex white Gaussian noise E = [e(1), . . . , e(P )] . The
vectors forming E are uncorrelated. Then, the signal model
(2) may be expressed

Y = AX+E. (3)

Since the K targets are assumed to be stationary, the K
positions of the nonzero elements of x(p) is the same for
all p = 1, . . . , P hence, X has K nonzero rows.

III. DETECTION BY COMPRESSIVE SENSING

The goal of detection is to determine the number of targets
K, and given K, which K rows of X are nonzero. One
approach to achieve this goal is to solve the nonconvex
optimization problem

min ‖Y −AX‖2F + λ‖X‖0. (4)

Here ‖X‖0 is the `0 quasi-norm that counts the number
of nonzero rows in X, and λ is a regularization parameter.
Numerous algorithms have been proposed in order to find an
approximate solution to (4). However designing the proper
value for λ often requires prior knowledge such as the number
of targets K and the noise power σ2. Even with such prior
knowledge, designing λ is not an easy task.

In order to bypass designing the regularization parameter
λ, we instead propose the GLRT-MP that combines concepts
of the MP algorithm and detection to test candidate entries
found by MP. More specifically, conventional MP iteratively
identifies the positions of the nonzero rows of X. However,
without prior knowledge of K, deciding when to terminate
the algorithm may be difficult. Instead, with GLRT-MP, after
identifying a candidate nonzero row, GLRT-MP tests it against
a threshold. The threshold is set such that false alarms do not
exceed an acceptable level. If the row passes the test, it is
declared to contain a target. The algorithm then searches for

the next nonzero row. The algorithm terminates as soon as a
selected row does not pass through the detection test.

The advantage of this approach is that it affords to trade off
the regularization parameter λ, which is difficult to obtain,
for a threshold parameter γ, which can be obtained from
classical detection theory considerations. Since the detector
plays a large role in our algorithm, we review some results
from detection theory before, presenting the details of the
proposed GLRT-MP algorithm.

A. GLRT - Known noise power

Here we derive the detection test for the rows of X when
the noise power is known. Let us assume we are at iteration
k, meaning that k − 1 target have already been detected. Let
Sk−1 denote the set of indices of rows of X where targets
have been detected. At iteration k, the GLRT-MP algorithm
has G − |Sk−1| indicies it can choose to test. It chooses
the index j = argmaxl ‖a(φl)WSk−1

‖2/‖P⊥ASk−1
a(φl)‖2,

where ASk−1
is the manifold matrix consisting of the steering

vectors of the k−1 detected targets, P⊥ASk−1
is the projection

matrix onto the space orthogonal to ASk−1
, and WSk−1

is the
orthonormal basis of P⊥ASk−1

Y. At iteration k, the GLRT-MP
algorithm determines a row of X as a candidate target, and
adds it to the set Sk−1 to form the set Sk. Given the set Sk
of previously detected targets and the current candidate target
the signal model (3), is reduced to

Y = ASkXSk +E. (5)

where XSk consists of the k rows indexed by Sk.
Next, GLRT-MP poses the following hypothesis problem

H0 : Y = ASk−1
XSk−1

+E

H1 : Y =ASkXSk +E
(6)

From (5), the probability density function (pdf) of the mea-
surement matrix Y conditioned on XSk is given by

p(Y|XSk) =
P∏
p=1

1

πNσ2N
e−

1
σ2
‖y(p)−ASk

xSk (p)‖
2
2 (7)

where xSk(p) is a column of XSk . The generalized likelihood
ratio (GLR) is formed by taking the ratio

L(Y, Sk) =
p
(
Y
∣∣∣X̂Sk ,H1

)
p
(
Y
∣∣∣X̂Sk−1

,H0

) (8)

where X̂Sk is the maximum likelihood estimate (MLE) of
XSk . It can be shown by using [3], regarding ASk−1

as the
interference subspace and ASk as the signal and interference
subspace that for a single snapshot y(p), the likelihood ratio
yields

L(y(p), Sk) =
‖(PASk

−PASk−1
)y(p)‖22

σ2
. (9)



For P independent snapshots, the GLRT is obtained by sum-
ming GLRTs for individual snapshots. The detection test is
then,

L(Y, Sk) =

P∑
p=1
‖(PASk

−PASk−1
)y(p)‖22

σ2
≥ γ

=
‖(PASk

−PASk−1
)Y‖2F

σ2
≥ γ

(10)

where γ is a threshold parameter. The detector decides H1 if
the value of L(Y, Sk) is greater than γ, otherwise the detector
decides on H0.

Under H0, the candidate target determined by the GLRT-
MP algorithm produces a likelihood ratio

L(Y, Sk) = max
l

L
(
Y, Sk−1

⋃
l
)
, (11)

where the notation Sk−1
⋃
l is understood to mean that the

set Sk is formed by adding to Sk−1 the index of the l-th
row of X. Under H0, the added row does not correspond
to a target, then the GLR L(Y, Sk−1

⋃
l) can be shown to

be distributed according to χ2
2P , the chi-squared distribution

with 2P DOF. Since L(Y, Sk) is the maximum of G−|Sk−1|
random variables distributed according to χ2

2P , the probability
of false alarm (declaring H1 when H0 is true) is given by

PF = Pr

(
max
l

L(Y, Sk−1
⋃
l) ≥ γ|H0

)
=
(
Qχ2

2P
(γ)
)G−|Sk−1|

(12)

where Qχ2
2P
(·) denotes the integral over the tail of the χ2

2P

distribution.
Under H1, the GLR is distributed according to χ

′2
2P (ρ),

the chi-squared distribution with 2P DOF and non-centrality
parameter ρ given by

ρ =
‖Xj‖22
σ2

‖(PASk
−PASk−1

)aj‖22 (13)

The probability of detection is then given by

PD = Pr (L(Y, Sk) ≥ γ|H1)

= Qχ′22P (ρ)(γ).
(14)

Using (12) we can obtain the threshold γ that ensures an
acceptable level of false alarms α

γ = Q−1
χ2
2P
(α1/(G−|Sk−1|)). (15)

Finally, the probability of detection for a specified α is given
by

PD = Qχ′22P (ρ)(Q
−1
χ2
2P
(α1/(G−|Sk−1|)). (16)

B. GLRT - Unknown noise power

In this section, we provide a test statistic that is indepen-
dent of the noise power and hence my serve as a CFAR
detector. Let us assume we are at iteration k, meaning
that k − 1 targets have already been detected. At itera-
tion k, the GLRT-MP algorithm chooses the index j =
argmaxl ‖a(φl)WSk‖2/‖P⊥ASk−1

a(φl)‖2, as in the known
noise case, and adds the index to Sk−1 to form the set Sk.
Given this set, the signal model is given by (5) and the binary
hypothesis test is given by

H0 : Y = ASk−1
XSk−1

+E

H1 : Y = ASkXSk +E
(17)

The GLR is given by

L(Y, Sk) =
p
(
Y
∣∣∣X̂Sk , σ̂

2
(1),H1

)
p
(
Y
∣∣∣X̂Sk−1

, σ̂2
(0),H0

) (18)

where σ̂(i) is the MLE of the noise standard deviation σ under
Hi. It can be shown under the Gaussian assumption, [2] that
(18) can be equivalently expressed as

L(Y, Sk) =
σ̂2
(0) − σ̂

2
(1)

σ̂2
(1)

. (19)

From [13] it was shown that the MLE of σ̂2
(1) assuming that

ASk is the target manifold matrix (the set of steering vectors

associated with the k targets) is given by σ̂2
(1) =

P∑
p=1

yH(p)(I−

PASk
)y(p). Similarly, assuming that ASk−1

is the target

manifold matrix the σ̂2
(0) =

P∑
p=1

yH(p)(I−PASk−1
)y(p). Re-

placing the MLEs σ̂2
(i) into (19) and simplifying the expression

we obtain

L(Y, Sk) =

P∑
p=1

yH(p)(PASk
−PASk−1

)y(p)

‖P⊥ASk
Y‖2F

≥ γ. (20)

Under H1, the numerator of (20) is distributed χ
′2
2P (ρ),

where the noncentrality parameter can be shown to be

ρ =
‖Xj‖22
σ2

aHj (PASk
−PASk−1

)aj . (21)

Also under H1 (20) is distributed χ
′2
2P (N−|Sk|)(η) where the

noncentrality parameter can be shown to be

η = ‖P⊥ASk
ASK

XSK
‖2F . (22)

Therefore, under H1 the GLRT (20) is a ratio of two non-
central chi-squared variables, which is a doubly noncentral
F random variable. Let F (2)

2P,2P (N−|Sk−1|)(ρ, η) denote a dou-
bly noncentral F random variable with 2P numerator DOF,
2P (N − |Sk−1|) denominator DOF, numerator noncentrality



parameter ρ and denominator noncentrality paramater η. Then,
the probability of detection is given by

PD = Pr (L(Y, Sk) ≥ γ|H1)

= Q
F

(2)

2P,2P (N−|Sk−1|)
(ρ,η)

(γ). (23)

We take a moment to make several remarks about the GLRT
under H1. First, we ask what is the probability of detection if
the set Sk contains all the elements of the set SK , where SK is
the true set of K targets. Then, we can see that P⊥ASk

ASK
=

0, which implies that η = 0. Then the probability of detection
is given by

PD = Q
F

(2)

2P,2P (N−|Sk−1|)
(ρ,0)

(γ) = QF2P,2P (N−|Sk−1|)(ρ)
(γ).

(24)
Next, we ask what is the probability of detection when Sk

does not contain all the indicies in SK . Then, we see that
P⊥ASk

ASK
6= 0 and therefore η 6= 0, and the probability

of detection is given by (23). It is argued that when η 6=
0 the probability of detection is reduced compared to when
η = 0. Intuitively, when η 6= 0 the denominator of the GLRT
increases reducing the value of L(Y, Sk) and hence reducing
the probability in (24).

In words, without knowledge of the true locations of the K
targets one cannot ensure that all the contributions from all
K targets are removed by the orthogonal projection matrix in
the denominator. If the projection matrix does not remove all
the target contributions the denominator term becomes biased
which introduces a noncentrality parameter η. Then, it is our
goal to find a test statistic that maintains η = 0 while not
requiring any knowledge of the targets.

To achieve this test statistic we take a different approach
than in [2], [3]. We begin by separating the data matrix
Y into two partitions Y =

[
Ỹ, y(P )

]
where Ỹ =

[y(1),y(2), . . . ,y(P − 1)]. Using the singular value decom-
position (SVD) or the eigendecomposition of Ỹ, we obtain
the K dimensional signal subspace US and the N − K
dimensional noise subspace UN . We refer the reader to [12]
and [4] for more information on how to obtain these subspaces.

We then approximate P⊥ASk
≈ PN where PN = UNUH

N .
Notice that PNASK

≈ 0 because PN projects onto the noise
subspace which is orthogonal to the signal subspace where
ASK

resides. Testing the CUT we obtain

L(y(P ), Sk) ≈
‖(PASk

−PASk−1
)y(P )‖22

‖PNy(P )‖22
≥ γ. (25)

Unfortunately, the numerator and denominator in (25) are no
longer independent random variables in general. To remedy
this, let PS = USU

H
S be the projection matrix onto the signal

subspace, then we make an approximation and replace PASk

with PPSASk
= PSASk

(
AH
Sk
PSASk

)
AH
Sk
PS which is the

projection onto the subspace PSASk . Similarly, we replace
PASk−1

with PPSASk−1
. Using these replacements we obtain

the approximation

L(y(P ), Sk) ≈
‖(PPSASk

−PPSASk−1
)y(P )‖22

‖P⊥Ny(P )‖22
≥ γ.

(26)
It can be shown that now the numerator and denom-

inator are independent random variables. This is because
PPSASk

PN = PPSASk−1
PN = 0 due to PSPN = 0. Under

H0, the numerator of (26) is a χ2
2 random variable, and the

denominator of (26) is a χ2
2(N−K) random variable, therefore

(26) is distributed as F2,2(N−K). Then the probability of false
alarm is given by

PF = Pr (L(y(P ), Sk) ≥ γ|H0)

= QF2,2(N−K)
(γ).

(27)

Under H1, the numerator of (26) is distributed according to
χ
′2
2 (ω) with ω =

‖Xj(P )‖2
σ2 ‖(PSASk − PPSASk−1

)a(φj)‖22.
The denominator of (26) is still distributed as χ2

2(N−K),
therefore (26) is distributed according to F

′

2,2(N−K)(ω). The
probability of detection is given by

PD = Pr (L(y(P ), Sk) ≥ γ|H1)

= QF ′
2,2(N−K)

(ω)(γ).
(28)

Using (27), we can obtain the threshold γ that obtains a
desired false alarm α as

γ = Q−1F2,2(N−K)
(α). (29)

Finally, the probability of detection for a desired false alarm
α is given by

PD = QF ′
2,2(N−K)

(ω)(Q
−1
F2,2(N−K)

(α)). (30)

Note that our formulation requires the number of targets
K to obtain the signal and noise subspaces. Empirically, we
observed that overestimating the number of sources does not
cause the GLRT to collapse and a slight degradation of perfor-
mance was observed. Underestimating the number of sources
unfortunately leads to situations where some targets maybe
unrecoverable. The impact of overestimating the number of
sources K will be considered in Section IV. It should also be
noted that the test statistic (26) is independent of the noise
power and hence is a CFAR detector.

C. GLRT-MP

In parts A and B above, we presented the GLRT for the
cases of known noise and CFAR. We are now able to present
the GLRT-MP algorithm. The inputs into the algorithm are
the data matrix Y, the dictionary matrix A, and an acceptable
false alarm probability α. First, we present the algorithm for
known noise power σ2.

The algorithm begins by initializing an empty set S0, and
sets the iteration counter k to one. It then searches for the index



j = maxl ‖a(φl)WSk−1
‖2/‖P⊥ASk−1

a(φl)‖2, where again,
WSk−1

is the orthonormal basis of P⊥ASk−1
Y. It then updates

the set Sk−1 to obtain the set Sk = Sk−1
⋃
j. It then calculates

the appropriate threshold γ according to (15), and applies the
GLRT using the set Sk. If the target passes the GLRT, then
the algorithm increments k by one and the process repeats,
otherwise, the set Sk−1 is declared the set of nonzero rows
in X and the algorithm terminates. The pseudocode for the
algorithm is available below in the table Algorithm 1.

Algorithm 1 GLRT-MP - Known noise power
Input: Y, A, α
Initialization: Set S0 = ∅, k = 1
Repeat until stopping criteria:
1. Calculate WSk−1

= Orth(P⊥ASk−1
Y)

2. j = maxl ‖a(φl)USk−1
/‖P⊥ASk−1

a(φl)‖2
3. Find suitable threshold parameter γ according to (15)
4. Calculate L(Y, Sk) and compare to the γ
If L(Y, Sk) < γ output Sk−1 and terminate
Else k = k + 1 repeat

We now discuss the CFAR GLRT-MP when the noise
power is unknown to the algorithm. The algorithm begins by
initializing the empty set S0 and sets the iteration counter
k to one. Then, using the first P − 1 snapshots of Y we
estimate the signal subspace US and the noise subspace UN .
We then calculate the projection matrices PS = USU

H
S

and PN = UNUH
N . The algorithm then searches for the

index j = maxl ‖a(φl)WSk−1
‖2/‖P⊥ASk−1

a(φl)‖2. It then
calculates the appropriate threshold γ according to (29) and
applies the GLRT using the set Sk. If the target passes the
GLRT, then the algorithm increments k by one and the process
repeats, otherwise, the set Sk−1 is declared the set of nonzero
rows in X and the algorithm terminates. The psuedocode for
the algorithm is available below in the table Algorithm 2.

Algorithm 2 GLRT-MP - CFAR
Input: Y, A, α
Initialization: Set S0 = ∅, k = 1
Estimate: US and UN using the first P − 1 snapshots
Calculate: PS = USU

H
S and PN = UNUH

N

Repeat until stopping criteria:
1. Calculate WSk−1

= Orth(P⊥ASk−1
Y)

2. j = maxl ‖a(φl)USk−1
/‖P⊥ASk−1

a(φl)‖2
3. Find suitable threshold parameter γ according to (29)
4. Calculate L(Y, Sk) and compare to the γ
If L(Y, Sk) < γ output Sk−1 and terminate
Else k = k + 1 repeat

IV. NUMERICAL SIMULATIONS

In this section, we present numerical results to demonstrate
the potential of the GLRT-MP algorithm for target detection.
Unless stated otherwise, the number of sensors is set to N =
10, the array aperture Z = 10λ, the number of targets is

Fig. 1. Histogram of (1-CDF) of L(Y, Sk). Parameters used were the
following, N = 10, Z = 10, SNR = 12dB, P = 1, K = 2.

K = 2, the number of grid points G = 21, and the SNR
= 12dB per snapshot, the number of snapshots P = 1. To
produce each figure, we draw a random realization of the array
sensors’ positions using the uniform distribution U ∼ [0, Z] .
The sensor positions remain fixed throughout the Monte-Carlo
simulations. The target positions are also randomly drawn and
remain fixed throughout. The noise realizations and the phase
of the targets are independently drawn from run to run.

In Fig. 1, we plot (Qχ2
2P
(γ))(G−|Sk−1|) and the experimental

complementary function (1-CDF) of L(Y, Sk) to examine
how well our approximation in (12) fares to simulation. It
can be seen from the figure, that the analytical expression
(Qχ2

2P
(γ))(G−|Sk−1|) closely resembles the simulation. This

suggests that designing a threshold parameter from the analyt-
ical expressions provided in this paper results in a probability
of false alarm that is very close to the desired false alarm
probability.

In Fig. 2, we plot a ROC curve for both the conventional
beamformer and the GLRT-MP algorithm for P = 1, when
the noise power is known. It is seen that the ROC curve of
the GLRT-MP is to the left of the beamformer showing that
the GLRT-MP can achieve the same probability of detection
for a much lower probability of false alarm.

In Fig. 3, we plot the ROC for the GLRT-MP algorithm
for P = 25, in the CFAR case for various estimations
of the dimensionality of the signal subspace when the true
dimensionality of the signal subspace is K = 2. We denote
K̂ as the estimate of the dimensionality K. When K̂ = 2 the
GLRT-MP terminates once two targets have been estimated
because K̂ provides an upperbound on the number of targets.
Therefore no false alarms occur as long as the algorithm
correctly estimates the targets. We observe that K̂ = 3
achieves the best performance of the three curves. It is also
observed as the estimate of the dimensionality is farther from
K̂ = 3 the curves move slightly to the right suggesting a small
increase in false alarm probability.



Fig. 2. ROC curves of the GLRT-MP and the conventional beamformer.
Parameters used were the following, N = 10, Z = 10, SNR = 12dB, P = 1,
K = 2.

Fig. 3. ROC curves for various estimates of the dimensionality of the signal
subspace. Parameters used were the following, N = 10, Z = 10, SNR =
12dB, P = 1, K = 2.

V. CONCLUSIONS

In this paper, we developed a GLRT for multiple targets
when the noise power is known and provided the false alarm
and detection probabilities. We then build upon the known
noise case and develop a CFAR detector for multiple targets
and provide the false alarm and detection probabilities. We
then propose the GLRT-MP algorithm, a detector that com-
bines matching pursuit concepts and the GLRT derived in this
paper. Numerical results show that the analytical expressions
derived in this paper closely match the simulation results and
outperforms the conventional beamformer.
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